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For lines with very low characteristic impedance ( ZO ~ O), the

center plate occupies an increasingly larger proportion of the
rectangular width, a of the structure. For this case, the center

strip coupling becomes large so that b’ >> b and a/b’+ O.

Hence, from (4), it is evident that, for this case, 2a/ AC(01)~ Ofor
all a/b. Similarly, for the cases of the TEII and TE21 modes, it

can be seen that 2a/ Ac(llJ + 1 and 2a/Act21J + 2 for all a/b.

Both Gruner’s and Baier’s results for the rectangular coaxial line

[5], [6] confirm the above,

Referring back to Fig. 3 again, it is apparent that, for the only

altered TM-mode shown (TMIJ, the cutoff frequency is in-

creased. Whereas when no center conductor is present (waveguide

case), the TMII mode will always propagate before the TE21

mode, this situation generally becomes reversed when the center

strip is present. For the case of a 50-$? line, it is apparent that the

TE21 cutoff is below that of the TMII mode for all a\b >0,9,

Note that the presence of a relatively narrow center strip (w/a<

0.2) causes a marked increase in the TMII cutoff, but that this

increase does not exceed that corresponding to the TM12 cutoff.

In fact, for lines with ZO < -70 Q, the TMII cutoff is essentially

the same as that for the TM12 mode. In this case, when the center

conductor occupies an appreciable fraction of the width (0.6a or

more), it apparently acts as art electrical wall, causing the TMII

mode field structure to break up into a TMI1 structure that

contains an H-field null along the x-axis. These results are

confirmed by Grrmer’s data [5] which show the curves for the

TMII and TM12 cutoff, as well as those for the TM21 and TM22

modes merging for values of w/a >0.6.
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Field Patterns and Resonant Frequencies of
High-Ordler Modes in an Open Resonator

PING KONG YU> MEMBER,IEEE,AND KWAI MAN LUK,

STUDENThEMBER,lEEE

Abstract —Using the electromagnetic perturbation theory, it is shown

that the linearly polarized ‘l’EMrl modes (1> O) predicted by corwentiormf

methods are not the r,esonant modes in an open resonator. Instead, two

other series of high-orlder modes are proposed with improved accuracy in

resonant frequencies.
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I. NOMENCLATURE

velocity of light,

distance of separation between reflectors,

electric field strength,

IL(P, fl, z) fq(- j~z),

resonant frequency,

m,
propagation constant in free space,

azimuthal mode number,

generalized Laguerre polynomial,

(d/dx)Lj(x),

radial mode number,

axial mode number,

radius of curvature of the phase front,

radius of curvature of the reflector,

radius of the beam wave,

radius of the beam waist,

radius of the beam wave at z = D/2,

energy stored,

unit vectors along the z direction,

small increment,

cylindrical coordinates,
additional phase shift.

II. INTRODUCTION

From the approximate beam-wave theory [1], there exists a

complete set of linearly polarized Gaussian beam modes, which

are conventionally designated as TEMP1. These modes can be

separated into two series, and can be represented by

.exp
[ I–Jkz+j(2p+l+l)Q–jg Cos[e (1)

and

.exp
[ 1–jkz-tj(2p +l+l)@-j~ sinlfl (2)

where p and 1 are the radial and azimuthal mode numbers,
respectively. By combining two linearly polarized modes of the
same order, it is possible to synthesize other polarized modes in
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the form of

‘x=(fi~)’’$($)~ex’(%)

\

. exp
[ 1–jkz+j(2p+l+l)0–j~ cos10

~“(~:)’~$(%)%’’p(%)

)

. exp
[ 1

–jkz+j(2p+l+l)@–j~ sin16’

and

Ex=(@)L;($)%ta-p(%l

)

. exp
[ 1–jkz+j(2p+2)@–j* sin8

..”= -(fi;).)(%)%exp(+i

}

. exp
[ 1–jkz+j(2p+2)Q–jg CoS@.

(3)

(4)

It is shown in the Appendix that the linearly polarized modes

represented by (1) and (2) can be obtained from appropriate

combinations of the modes represented by (3) and (4). Thus, the

solutions (3) together with (4) are also complete. The positive and

negative signs can be arbitrarily designated for “series A” and

“series B” TEMP, modes, respectively, while the circular electric

TEMPI modes (4) maybe considered as belonging to “series A”.

Moreover, the resonant frequency for any one of the above

resonant modes can be determined from the following unique

formula:

[ ( 11
f=; ~+l+Q:~+laccos 1-: . (5)

1

Refinements for this approximate beam-wave theory have been

attempted in the literature by several methods. In the paper by

Lax, Louisell, and McKnight [2], it is shown that the transverse

field components for a beam wave derived from the approximate

beam-wave theory is only the zeroth-order terms of the exact field

solutions. Particularly, the expression for the first-order field of

the generalized Laguerre-Gaussian beam mode of the spherical

open resonator is shown explicitly. This beam ~mode is assumed

to have a zeroth-order field component which is transverse and

linearly polarized as described in (1) and (2). This first-order field

component is found to be longitudinal We have, however, re-

cently demonstrated [3] both theoretically and experimentally

that, in the specific case p = O, only the higl-order modes having

the zeroth-order transverse field components as described in (3)

and (4) can be found in the open resonator, while the modes

having a linearly polarized zeroth-order transverse field compo-

nent, as described in (1) and (2), are in fact not the resonant

modes. In this paper, a different approach, based on electromag-

netic perturbation theory, will be carried out I o show that the

linearly polarized TEMP{q modes (with p >0 and 1> O) do not

exist i~ the open resonator. (Here, we still adopt the conventional

but somewhat inappropriate notation—linearly polarized TEMP1~

mode. In this paper, this notation is understood to represent the

generalized Laguerre–Gaussian beam mode which has a zeroth-

order transverse field component.) This finding is more general

than our previous result, which is obtained by using the

complex-source-point theory and the result also serves as a check

on our previous claim [3].

In the two related papers [4], [5], the first-order perturbation

calculations have been examined by Erickson in an attempt to

improve the accuracy of the resonant formula for the general

linearly polarized TEMP~~ mode. Specifically, the first perturba-

tion is concerned with the neglected term d2~/dz 2 in the scalar

wave equation, and the second perturbation is due with a change

of the constant phase surface of the approximate solution to that

of the sphencaf reflector. However, Cullen [6] has demonstrated

for the fundamental beam mode that, in order to obtain the

desired accuracy, a third perturbation result should be added.

This perturbation arises from a change of the boundary condition

ET= O to Etan = O over the reflecting surface, Et,n being the

tangential component of the electric field.

The objective of this paper is to examine the three perturbation

calculations for the general “series A” and “series B” modes

described by (3). The result so obtained improves the resonant

formula (5) explicitly. And, most importantly, a difference found

between the “series A” and “series B” modes of the same order

(1> O) provides an argument for the nonexistence of linearly

polarized TEMPI~ modes (1> O) in the open resonator.

II. PERTURBATION ANALYSIS

A. Perturbation of the Differential Operator

The conventional beam wave formulas are the result of an

approximation that the term d21)/ dz 2 in the scalar wave equa-

tion

V2Ek + k2EX=0 (6)

is small and to be neglected. A perturbation calculation for this

neglected term has been evaluated by Erickson [5] for the linearly

polarized modes (1) and (2). It is straight forward to see that his

result is applicable to the other polarized modes (3) and (4). The

resulting frequency shift is given by

A f = ~ arc tan

[ 1-&(6p2+6pl+ 12+6p +31+2) (7)

which may be further approximated by

1
—x(6p2+6pl+ 12+6p +31+2) (8)

‘f= & 4~kRl ~:

with k2w:w:=2RlD. (9)

From (8), we have

Af (6p2+6pl+12 +6p+31+2)

f
(lo)

2k4w;

which gives the order of magnitude of the error inherent in the

approximate resonant formula (5) due to the neglecting of the

term 824J/ dz 2 in the wave equation.

B. Perturbation of Boundary Surface

To calculate the frequency shift due to the deforming of the

constant phase surface ~ = O (both E.y and Ey in (3)) into a

spherical shape, the functions @ and l/R can be expanded in

terms of z – Zl(zl = D/2), and then z – ZI can be replaced by

the value – p2/2 R ( Zl). This yields

@(z)= @(zl)–p2/kw:R(zl)

kp2 kp’ kp4

( )}

~_ R(zl) (11)

2R(z) = 2R(z1) + 2R3(z1) 2Z1
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both of which are then substituted into (3) to give an equation for the surface can be dleduced from the Green’s

the constant phase surface ~ = O as

(12 _ (2p+l+l)P2 ~:, RI

‘N= ‘1 – 2>1 k2w;Rl l–Z “
(12)

1

643

second identity as

(20)

Here. R, = R (z,), w, = W(Z, ) and ZM is the z-coordinate on the
-’u

constant’phase ~urfa~e. Not: that (12) is accurate for the range of where the surface integral is taken over both of the two mirrors.

p on which the field strength is of significance. To the same To evaluate (19), v, must be determined first. Initially, the

degree of accuracy, the surface of a sphencaf reflector of radius divergence equation will be used to estimate E:. In our first-order

of curvature RI can be expressed as approximation, the variation of the functions R, @, and w with z

> 4 can be neglected when deriving the expression for E,. Thus, (3)p-
L

‘S=zl-” 2RI – 8R:
(13) can be substituted into

Using the action theorem A f/f= A W/ W, the required frequency

“i(~+%l
(21)

shift can be determined. To do so, we can write

Aw= 2~2”/m&[\HXlz+ IHY12] Azpdpd@ (14) to give
00

with

()

(2p+l+l)p’+ ~_& p’

E,=j~(~)exp(~]-cos(l-l)O

Az=z~–zs=–
kz w:R1 W; 2k2w:R1

([ 1_j~z_(2p+/+l)@+&\.exp

(15)
2R )

and
7

[Hv12+lHX1’=\HOl

‘(%)’’(%lexp(%l ‘1’) ‘;[:;:;:’;(%]]

Using the integrals for the Laguerre polynomials [7], we arrive at
‘w

[
. 2p ’+2pl–l~+2p +l+2

“ex’(%)L~!$)cOs’’-
exp

{[
–j kz–(2p+l+l)Q+~ 1) (22)

1-$[6p’+6pl+ 12+6p+31+2)
for “series A” TEMPl modes, and

(17)

To the same degree of accuracy, the average energy stored is
EZ=j~[~)[exp(~]cos(l+l)O

found to be

(l+p)!
w=+/Jo[Hol’w@”-

P! ‘ {18)

Thus

1
‘f= & “ ~vkR1

[

2p2+2pl– 1’+2p+l+2

1-$(6p2+6pl+ 12+6p +31+2) (19)

C. Perturbation of the Nonoanishing Components of Ey and E, on

the Reflectutg Surface

The use of the boundary condition E.= EY = O on the mirror
surface is not correct. The reason is that, on the perfectly con-
ducting mirror, the electric field (vector) is only required to be

normal to the mirror surface, thus, there may be finite values of

Er and f+ on the surface. Following a similar procedure adopted

by Cullen [6], let us suppose u and u are two different represen-

tations of Ex and both are solutions of the scalar wave equation,

with u = O and v = u, on the mirror surface S. Then a first-order

perturbation formula concerning with the nonvanishing of Ex on

.exp
([

–j kz–(2p+l+l)@+~
1)

“m ( )1

2W0 ~ Q’
(23)L( * exp]~ – ~LP w’

P
W2 ,

for “series B” TEMPl modes.

By taking the imaginary part of (3), and (22)–(23), the standing

wave solutions corr(:sponding to the odd axial modes in an open

resonator can be derived as

[ 1sin kz–(2p+l+l)@+~ sinlb’ (25)
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[ 1.COS kz–(2p+l+2)@+~ COS([~1)6

[

.Cos /cz_(2p+1+1)@+ k&’
2R 1

,exp
()[

- COS kz–(2p+l+l)Q+~
w’ 1

[COS(l-l)O* COS(l-1)0] (26)

where the upper signs and lower signs are for the “series A” and

“series B” TEMPf~ modes, respectively, (q is the ~al MOde

number).

To determine the value of E, on the mirror surface at + Z1. we

can insert, consistent with our first-order approximation

z = Z1 – p2/2R1

)

(27)
k:l –arctan(:l/zO) = (q+l)~/2

into (26), and neglect the variation of w, R, and @ with z to give

[cos(/-I)di cos([-I)6].

Thus, using the condition E,m = O, we find

“,=E,Y,=E .~
‘S RI

)2p2cos6’cos(l-l)e(& ‘-2.
kw~Rl \\ WI

for “series A” TEMP~~ modes. and

H2p2cos0cos(l+l)0 @p [
~~=—

kw;Rl W

for “series B” TEMPlg modes.

(28)

(29)

(30)

Moreover. to the same degree of approximation, we have

(31)

on the mirror surface.

Now, using (29). (30), and (31). and retaining only first-order

terms, the perturbation formula (20) CM be evaluated to Pf

{

-(1-[)

k2RlD ‘
(for “series ~”)

Y= -(1+1)
(32)

(for “series B”)
k2RlL3 “

I c (1-1)—
% “ wkRl ‘

(for “series A”)

or Lf =

\

c (1+1)
(33)

_—.
2D ~kRl ‘

(for “series B”).
\

We would like to point out that, when using the divergence

equation (21), the azimuthal mode number i is assumed not to be

zero (E, # 0), thus, (33) can only be considered as a good
estimate” of the frequency shift for the resonant modes that I # O,

but not for the pure radial modes. The argument can be referred

to Cullen [6].

~~. CONCLUSION

It is reasonable to add all the three perturbed frequency shifts

(8), (19), and (33) to give

( c 1..—
2D 47rkRl

.(2p’+2pl- l’+2p+51-2)

Af = 1 ‘for “series A “) (34)
c

—. J..-. (2p2+212+ 2p+31 -2)-2)
2D 4rrkRl

\ (for “series B “).

It can also be shown that (34) M also true for the even axiaf

modes and the circular electric TEMPI modes (4). FM a check, we

may put p = O in (34) which will become the final term of (10) in

[3].

To conclude, there exists a difference in the resonant frequency

between” series A” and’6 series B” TEMP,~ modes (i > 0) of the

same order in the “large aperture” spherical open resonator.

Therefore, they cannot be superimposed to produce the linearly’

polarized TEMP,~ modes. Also, we have obtained an improve-

ment in the accuracy of the resonant formula for both series of

the high-order modes, at least for 1 # 0.

APPENDIX

CONSTRUCTION OF THE LINEARLY POLARIZED MODES

FROM THE “SERIES A” AND THE “SERIES B” MODES

In this appendix, we shall show that the linearly polarized

modes can be obtained by linear combinations of the “series J4”

and the “series B” modes from the point of view of the corwen -
tional beam-wave theory.

First, it is obvious that the linearly polarized modes described
in (1) can be deduced by adding together the “series A” and the

“series B” modes described in (3).

Next, in order to obtain the linearly polarized modes described

in (2) from the modes described in (3) and (4), the technique of
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transformation of coordinate systems and vector components

may be adopted.

Let us consider the rotation of the x- and y-axis about the

origin to an angle ~ counterclockwise. Mathematically, we trans-

form the (p, O) coordinates to the (p*, f?*) coordinates, where

(~*=e–p
p*=p. (Al)

Then the transformation of the field components can be ob-

tained by

[::~~i]=[-~% %][:[;;;]] (A,)

Substituting (3) into (A2), we have

(

E;= A*cos[/e*+(l Tl)p]

EJ=~A*sin[16*+ (l Tl)/3]
(A3)

with

( w) ff++$)A*= # ‘Li

.exp
[ 1

“~ . (A4)–jkz+j(2p+l+l)Q–~

Now, consider that the “series A” mode is rotated to (3 = rr/2
(1 – 1), (A3) is reduced to

(

Ex=– AsinltJ

Ey=AcoslO.
(A5)

These expressions are true for 1>1. The superscript * is dropped

from now on. On the other hand, consider that the “series B”

mode is rotated to /3 = 7/2(1+ 1), (A3) is reduced to

{

EX=– Asin10

EY=– Acos18.
(A6)

These expressions are true for,1 >1. Combining (A5) and (A6),

we find

{

EX = –2A sin 16

EY=O
(A7)

which is identicaf to (2), apart from a constant factor. It appears

that these expressions are only true for 1>1 but, using (4) and

(A6), it is obvious that (A7) is also true for the special case Z= 1.
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Phased-Dipole Applicators for Torso Heating in
Electromagnetic Hyperthermia

YONG-GANG GU AND OM P. GANDHI, FELLOW,lEEE

Abstract –The paper describes a two-dipole applicator that is capable of

providing in-depth and relatively uniform rates of heating (SAR’S) over the
volume of the torso an!d greatly reduced SAR’S for the rest of the body.

Power coupling efficiencies in excess of 60 percent and fairly low leakage

power densities have been measured for the applicator.

L INTRODUCTION

Hyperthermia is considered to be a potentiator of radiation

therapy or chemotherapy for many forms of cancer [1], [2].

Among the various techniques, such as conventional heating, or

heating by ultrasonic or electromagnetic energy, the latter offers

the advantage of minimal reflections at interfaces with bones or

with air cavities. Because of the somewhat shallower depth of

penetration of electromagnetic energy (on the order of 5-10 ems),

phased-array applicators have, however, had to be used to obtain

in-depth heating at the tumor sites. In our previous work [3], we

have proposed and provided theoretical designs of applicators

consisting of short dipoles which may be altered in position and

magnitude and phase of excitation for each of its elements so as

to obtain minimum deviation from prescribed inhomogeneous

rates of heating (SARS) for the various parts of the body.

Recognizing that designs for multidipole applicators for pre-

scribed temperature distributions would be of greater interest, we

have also recently st rtrted to develop an inhomogeneous thermal

model of man to allow for inhomogeneities of tissue electrical

and thermal properties and for increase in blood flow rates due to

vasodilation at elevated temperatures [4]. This paper gives the

experimental results obtained with scale models on phased-dipole

applicators for torscj heating. Given here are the efficiencies for

whole-body coupling, the SAR distributions over the volume of

the torso and elsewhere within the body, and the strength of the

leakage fields from the cylindrical metal casing.

II. PHASED-DIPOLE APPLICATORS

A conceptual illustration of the multidipole applicator is shown
in Fig. 1. The applicator uses short dipoles (of lengths less than
or equal to 0.1X wavelength) whose respective positions and

excitations (magnitude and phase) are obtained on the basis of

numerical calculaticms with a block model of man [5] for mini-

mum deviation from prescribed inhomogeneous SARS for the

various parts of the body. A metal cylinder, which may, of

course, be construe ted of metal screening, helps to contain the

fields to the absorber that is the human body. The radius of the

cyfinder is not critical but image theory must be used to correct

for the cylinder in numerical calculations. Of the various designs

presented in [3], the one used for the present experiments is the

applicator design flor abdominal heating. For this application,

one dipole placed ventrtllly in the symmetrical plane at a radial

distance of 0.35 m and at a location of 1.0 m above the base of

the feet was found to be adequate to give SARS in the abdominal

volume that were three times or more than those for the rest of
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