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For lines with very low characteristic impedance (Z, — 0), the
center plate occupies an increasingly larger proportion of the
rectangular width, a of the structure. For this case, the center
strip coupling becomes large so that »’> b and a/b' — 0.
Hence, from (4), it is evident that, for this case, 2a /A ;) — 0 for
all a/b. Similarly, for the cases of the TE;; and TE,; modes, it
can be seen that 2a /A4y~ 1 and 2a /A5y, — 2 for all a/b.
Both Gruner’s and Baier’s results for the rectangular coaxial line
[5], [6] confirm the above.

Referring back to Fig. 3 again, it is apparent that, for the only
alteted TM-mode shown (TM;;), the cutoff frequency is in-
creased. Whereas when no center conductor is present (waveguide
case), the TM;; mode will always propagate before the TE,,
mode, this situation generally becomes reversed when the center
strip is present. For the case of a 50-Q line, it is apparent that the
TE; cutoff is below that of the TM,; mode for all a/b > 0.9.
Note that the presence of a relatively narrow center strip (w/a <
0.2) causes a marked increase in the TM;; cutoff, but that this
increase does not exceed that corresponding to the TM;, cutoff.
In fact, for lines with Z, < ~ 70 Q, the TM,; cutoff is essentially
the same as that for the TM,;, mode. In this case, when the center
conductor occupies an appreciable fraction of the width (0.6a or
more), it apparently acts as an electrical wall, causing the TM;
mode field structure to break up into a TM,, structure that
contains an H-field null along the x-axis. These results are
confirmed by Gruner’s data [S] which show the curves for the
TMy; and TM;, cutoff, as well as those for the TM,, and TM,,
modes merging for values of w/a > 0.6.
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Field Patterns and Resonant Frequencies of
High-Order Modes in an Open Resonator

PING KONG YU, MEMBER, IEEE, AND KWAI MAN LUK,
STUDENT MEMBER, IEEE

Abstract —Using the electromagnetic perturbation theory, it is shown
that the linearly polarized TEM ,, modes (/> 0) predicted by conventional
methods are not the resonant modes in an open resonator. Instead, two
other series of high-order modes are proposed with improved accuracy in
resonant frequencies.

I. NOMENCLATURE

¢ velocity of light,

D distance of separation between reflectors,
E electric field strength,

E, ¥(p, 0, 2)-exp(~ jkz),

f resonant frequency,

J /-1,

k propagation constant in free space,

! azimuthal mode number,

LI’,(x) generalized Laguerre polynomial,
L,(x) (d/dx)Ly(x),

p radial mode number,

q axial mode number,

R radius of curvature of the phase front,
R, radius of curvature of the reflector,
w radius of the beam wave,

Wo radius of the beam waist,

wy radius of the beam wave at z =D /2,
W energy stored,

2 unit vectors along the z direction,

A small increment,

0,0,z cylindrical coordinates,

® =arctan(z/z,) additional phase shift.

II. INTRODUCTION

From the approximate beam-wave theory [1], there exists a
complete set of linearly polarized Gaussian beam modes, which
are conventionally designated as TEM,,,. These modes can be
separated into two series, and can be represented by

{ 2 2
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where p and / are the radial and azimuthal mode numbers,
respectively. By combining two linearly polarized modes of the
same order, it is possible to synthesize other polarized modes in
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the form of
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It is shown in the Appendix that the linearly polarized modes
represented by (1) and (2) can be obtained from appropriate
combinations of the modes represented by (3) and (4). Thus, the
solutions (3) together with (4) are also complete. The positive and
negative signs can be arbitrarily designated for “series 4” and
“series B” TEM,,; modes, respectively, while the circular electric
TEM ,; modes (4) may be considered as belonging to “series 4.
Moreover, the resonant frequency for any one of the above
resonant modes can be determined from the following unique
formula:

C
'=3b

()

Refinements for this approximate beam-wave theory have been
attempted in the literature by several methods. In the paper by
Lax, Louisell, and McKnight [2}, it is shown that the transverse
field components for a beam wave derived from the approximate
beam-wave theory is only the zeroth-order terms of the exact field
solutions. Particularly, the expression for the first-order field of
the generalized Laguerre-Gaussian beam mode of the spherical
open resonator is shown explicitly. This beam mode is assumed
to have a zeroth-order field component which is transverse and
linearly polarized as described in (1) and (2). Thus first-order field
component is found to be longitudinal. We have, however, re-
cently demonstrated [3] both theoretically and experimentally
that, in the specific case p — 0, only the high-order modes having
the zeroth-order transverse field components as described in (3)
and (4) can be found in the open resonator, while the modes
having a linearly polarized zeroth-order transverse field compo-
nent, as described in (1) and (2), are in fact not the resonant
modes. In this paper, a different approach, based on electromag-
netic perturbation theory, will be carried out 10 show that the
linearly polarized TEM,,, modes (with p > 0 and /> 0) do not
exist in the open resonator. (Here, we still adopt the conventional
but somewhat inappropriate notation—linearly polarized TEM,,;,
mode. In this paper, this notation is understood to represent the
generalized Laguerre—Gaussian beam mode which has a zeroth-
order transverse field component.) This finding is more general
than our previous result, which is obtained by using the

2p+1+1 D
g+1+ - arccos(l Rl)].
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complex-source-point theory and the result also serves as a check
on our previous claim [3].

In the two related papers [4], [5], the first-order perturbation
calculations have been examined by Erickson in an attempt to
improve the accuracy of the resonant formula for the general
linearly polarized TEM,,,, mode. Specifically, the first perturba-
tion is concerned with the neglected term 9% /322 in the scalar
wave equation, and the second perturbation is due with a change
of the constant phase surface of the approximate solution to that
of the spherical reflector. However, Cullen [6] has demonstrated
for the fundamental beam mode that, in order to obtain the
desired accuracy, a third perturbation result should be added.
This perturbation arises from a change of the boundary condition
E.=0 to E,, =0 over the reflecting surface, E,, being the
tangential component of the electric field.

The objective of this paper is to examine the three perturbation
calculations for the general “series A” and “series B” modes
described by (3). The result so obtained improves the resonant
formula (5) explicitly. And, most importantly, a difference found
between the “series A” and “series B” modes of the same order
(/> 0) provides an argument for the nonexistence of linearly
polarized TEM ,,, modes (/> 0} in the open resonator.

II. PERTURBATION ANALYSIS

A. Perturbation of the Differential Operator

The conventional beam wave formulas are the result of an
approximation that the term 9%} /dz> in the scalar wave equa-
tion

V?E, +k*E,=0 (6)
is small and to be neglected. A perturbation calculation for this
neglected term has been evaluated by Erickson [5] for the linearly
polarized modes (1) and (2). It is straight forward to see that his
result is applicable to the other polarized modes (3) and (4). The
resulting frequency shift is given by

D

Af=;7—05arctan 4k3wé(6p2+6p1+12+6p +31+2)|  (7)
which may be further approximated by
Af=2—cl—)-4w}(RlZ—§(6p2+6pl+12+6p+3lf2) (8)
with k*wiwi=2R,D. )
From (8), we have
Af _ (6p7 +6pl+1°+6p +31+2) (10)

f 2k wg
which gives the order of magnitude of the error inherent in the

approximate resonant formula (5) due to the neglecting of the
term 3%y /dz” in the wave equation.

B. Perturbation of Boundary Surface

To calculate the frequency shift due to the deforming of the
constant phase surface E=0 (both E, and E, in (3)) into a
spherical shape, the functions ® and 1/R can be expanded in
terms of z — z;(z; = D/2), and then z — z; can be replaced by
the value — p*>/2R(z;). This yields

D(z)=0(z)—p’/kwiR(z)
kp? _ kp 1— R(z) )
2R(z) 2R(z) 2z

(11)

2Rk3lz4zl) (
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both of which are then substituted into (3) to give an equation for
the constant phase surface £ =0 as

2 4
o0 (p+i+Dp’ ( Rl)
Iy=n—55 = |1—-—|. (12
N 2R kK wiR, 2RI\ 2z (12)
Here, Ry = R(z;), w; =w(z;) and zy is the z-coordinate on the

constant phase surface. Note that (12) is accurate for the range of
p on which the field strength is of significance. To the same
degree of accuracy, the surface of a spherical reflector of radius
of curvature R; can be expressed as

ZsT 4 (13)
Using the action theorem Af/f = AW/ W, the required frequency
shift can be determined. To do so, we can write
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Using the integrals for the Laguerre polynomials [7], we arrive at
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To the same degree of accuracy, the average energy stored is
found to be

(l+p)

1
W= 77ﬂolHo| (18)

Thus
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C. Perturbation of the Nonvanishing Components of E, and E, on
the Reflecting Surface

The use of the boundary condition E,= E, =0 on the mirror
surface is not correct. The reason is that, on the perfectly con-
ducting mirror, the clectric field (vector) is only required to be
normal to the mirror surface, thus, there may be finite values of
E. and E, on the surface. Following a similar procedure adopted
by Cullen [6], let us suppose u and v are two different represen-
tations of E, and both are solutions of the scalar wave equation,
with u =0 and v = v, on the mirror surface S. Then a first-order
perturbation formula concerning with the nonvanishing of E, on
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the surface can be deduced from the Green’s second identity as

f (v, vu)-dS
—fff L N (20)
2k% [utadv

1

where the surface integral is taken over both of the two mirrors.

To evaluate (19), v, must be determined first. Initially, the
divergence equation will be used to estimate E.. In our first-order
approximation, the variation of the functions R, @, and w with z
can be neglected when deriving the expression for £,. Thus, (3)
can be substituted into

JE,
+ 5

1 (9E,
z gk \ dx
2p : -0
Ez=j—2-(——) exp(v)-cos(l—l)(i

.exp{ [kz— k" ]\

(21)

to give

2
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for “series A” TEM,,, modes, and

(5] el SF]
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for “series B” TEM,,, modes.

By taking the imaginary part of (3), and (22)—(23), the standing
wave solutions corresponding to the odd axial modes in an open
resonator can be derived as

li e —
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where the upper signs and lower signs are for the “series 4™ and

“series B” TEM,,;, modes, respectively, (¢ is the axial mode

number).
To determine the value of E. on the mirror surface at + z;. we
can insert, consistent with our first-order approximation

P/2R; }
kz, —arctan(z;/z9) = (¢ +1)7/2

z=17z,=

(27)
into (26), and neglect the variation of w, R, and ® with z to give
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(30)

modes.
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Moreover. to the same degree of approximation, we have
[ 7
U= — Z‘KQ _‘/_EB 4 _z_p_z exp | —2 ’
wp |\ Wy PUwi P wi

on the mirror surface.
Now, using (29). (30, and (31). and retaining only first-order
terms, the perturbation formula (20) can be evaluated to yield

)(— DD 05103

(31)

—(1-DN
PQ—IL , for “series 4~
> )
A k“R,D
& (32)
—(1+/
! ——(2———1 (for “series B}
kR, D
. (1 -1) . "
j 20 7kR, (for “series 4™)
or Af= (1) (33)
C c . ”
\ 2D 7R, (for “series B”).

We would like to point out that, when using the divergence
equation (21), the azimuthal mode number / is assumed not to be
zero (E, #0). thus, (33) can only be considered as a good
estimate of the frequency shift for the resonant modes that [+ 0,
but not for the pure radial modes. The argument can be referred
to Cullen [6].

V. CONCLUSION

It is reasonable to add all the three perturbed frequency shifts
(8), (19), and (33} to give

¢ 1 A2 45 72 _
z—ﬁ'm'(ép +2pl—1-+2p+5 2)
for “series 4
=l ( ! ()
—_ . 2 _? - ¥
7D 4nkE, (Zp +2pl—1+2p—31 _)

(for “series B”).

It can also be shown that (34) 1s also true for the even axial
modes and the circular electric TEM,; modes (4). As a check, we
may put p = 0 in (34) which will become the final term of (10} in
[3].

To conclude, there exists a difference in the resonant frequency
between “serics A” and “series B” TEM,,, modes (/> 0) of the
same order in the “large aperture” spherical open resonator.
Therefore, they cannot be superimposed to produce the lineariy
polarized TEM,,,, modes. Also, we have obtained an improve-
ment in the accuracy of the resonant formula for both series of
the high-order modes, at least for /= 0.

APPENDIX
CONSTRUCTION OF THE LINEARLY POLARIZED MODES
FROM THE “SERIES A" AND THE “SERIES B’ MODES

In this appendix, we shall show that the linearly polarized
modes can be obtained by linear combinations of the “series 4™
and the “series B> modes from the point of view of the conven-
tional beam-wave theory.

First, it is obvious that the linearly polarized modes described
in (1) can be deduced by adding together the “series 4™ and the

“series B modes described in (3).

Next, in order to obtain the linearly polarized modes described
in (2) from the modes described in (3) and (4), the technique of
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transformation of coordinate systems and vector components
may be adopted.

Let us consider the rotation of the x- and y-axis about the
origin to an angle 8 counterclockwise. Mathematically, we trans-
form the (p, 0) coordinates to the (p*, 6*) coordinates, where

{0* =0-8
p*=p.

Then the transformation of the field components can be ob-
tained by

E¥(p*,0%) _ cosfB
EJ(p*,0%) —sin B
Substituting (3) into (A2), we have

E¥=A*cos[160*+(IF1)B]
E}=+ A*sin[{6*+ (I F1)B]

(A1)

SiIl,B:H:Ex(p’a) . (A2)

cosB || E,(p,0)

(A3)

with
{ *2 *2

(e (20 \ Mo [_P
A*_(,/z w)LI’( 2 )wexp( wz)

~exp[—jkz+j(2p +1+1)0 -

-"2”—:] (A4)

Now, consider that the “series A” mode is rotated to 8 = 7/2
(I —1), (A3) is reduced to
E,=—Asinlf
E,=Acoslf.

These expressions are true for /> 1. The superscript * is dropped
from now on. On the other hand, consider that the “series B”
mode is rotated to 8 = 7/2(/ +1), (A3) is reduced to

E ,=—Asinlf
y=—Acoslf.

(A5)

(A6)

These expressions are true for />1. Combining (A5) and (AS6),
we find

E =-2Asinlf
(A7)

E,=0

which is identical to (2), apart from a constant factor. It appears
that these expressions are only true for />1 but, using (4) and
(A6), it is obvious that (A7) is also true for the special case /=1.
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Phased-Dipole Applicators for Torso Heating in
Electromagnetic Hyperthermia

YONG-GANG GU anp OM P. GANDHI, FELLOW, IEEE

Abstract —The paper describes a two-dipole anplicator that is capable of
providing in-depth and relatively uniform rates of heating (SAR’s) over the
volume of the torso and greatly reduced SAR’s for the rest of the body.
Power coupling efficiencies in excess of 60 percent and fairly low leakage
power densities have been measured for the applicator.

I. INTRODUCTION

Hyperthermia is considered to be a potentiator of radiation
therapy or chemotherapy for many forms of cancer [1],[2].
Among the various techniques, such as conventional heating, or
heating by ultrasonic or electromagnetic energy, the latter offers
the advantage of minimal reflections at interfaces with bones or
with air cavities. Because of the somewhat shallower depth of
penetration of electromagnetic energy (on the order of 5-10 cms),
phased-array applicators have, however, had to be used to obtain
in-depth heating at the tumor sites. In our previous work [3], we
have proposed and provided theoretical designs of applicators
consisting of short dipoles which may be aitered in position and
magnitude and phase of excitation for each of its elements so as
to obtain minimum deviation from prescribed inhomogeneous
rates of heating (SAR’s) for the various parts of the body.
Recognizing that designs for multidipole applicators for pre-
scribed temperature distributions would be of greater interest, we
have also recently started to develop an inhomogeneous thermal
model of man to allow for inhomogeneities of tissue electrical
and thermal properties and for increase in blood flow rates due to
vasodilation at elevated temperatures [4]. This paper gives the
experimental results obtained with scale models on phased-dipole
applicators for torso heating. Given here are the efficiencies for
whole-body coupling, the SAR distributions over the volume of
the torso and elsewhere within the body, and the strength of the
leakage fields from the cylindrical metal casing.

II. PHASED-DIPOLE APPLICATORS

A conceptual illustration of the multidipole applicator is shown
in Fig, 1. The applicator uses short dipoles (of lengths less than
or equal to 0.1 Xwavelength) whose respective positions and
excitations (magnitude and phase) are obtained on the basis of
numerical calculations with a block model of man [5] for mini-
mum deviation from prescribed inhomogeneous SAR’s for the
various parts of the body. A metal cylinder, which may, of
course, be constructed of metal screening, helps to contain the
fields to the absorber that is the human body. The radius of the
cylinder is not critical but image theory must be used to correct
for the cylinder in numerical calculations. Of the various designs
presented in [3], the one used for the present experiments is the
applicator design for abdominal heating. For this application,
one dipole placed ventrally in the symmetrical plane at a radial
distance of (.35 m and at a location of 1.0 m above the base of
the feet was found to be adequate to give SAR’s in the abdominal
volume that were three times or more than those for the rest of
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